WEBJan 1, 2007 · The support vector machines (SVM) model with multiinput and single output was proposed. Compared the predictor based on RBF neural networks with test datasets, the results show that the SVM ...
WhatsApp: +86 18203695377WEBJan 1, 2024 · However, structural complexity and diversity of coals make it face huge challenge. In this study, a predictive model for morphological sulfur migration was developed using machine learning based on proximate analysis, ultimate analysis, sulfur forms of raw coal, ash composition, and blending ratio of coal. Three algorithms,, .
WhatsApp: +86 18203695377WEBDec 8, 2023 · Liu et al. realized the approximate analysis of coal based on laserinduced breakdown spectra by combining principal component regression, artificial neural network, and PCAANN models. All of the above methods are used to deal with highdimensional spectral data using machine learning, but the direct use of machine learning algorithms .
WhatsApp: +86 18203695377WEBJan 13, 2022 · Since hundreds or thousands of patches can be extracted from each image, the patch database is much larger than the rock and coal image database. The machine learning process is based on the patches. As discussed earlier, the RGB images are stored as threedimensional arrays, and the extraction of patches is accomplished by extracting .
WhatsApp: +86 18203695377WEBAbstract. Read online. The classifiion of surrounding rock stability of coal roadway has important theoretical and practical significance for the design, construction and management of onsite rock mass paper selected seven key indexes that affect the surrounding rock stability of coal roadway, collected the samples through field .
WhatsApp: +86 18203695377WEBOct 22, 2023 · The belt conveyor is a key piece of equipment for thermal power plants. Belt mistracking causes higher economic costs, lower production efficiency, and more safety accidents. The existing belt correction devices suffer from poor performance and high costs. Therefore, a design method for coal conveying belt correction devices is proposed in .
WhatsApp: +86 18203695377WEBDec 1, 2019 · SVM has good generalization performance and can effectively process problems such as complex data, small sample size, and nonlinear. Wang et al. [36], [37] proposed a coal recognition method (CSVM) based on SVM and coal spectral characteristics. Their results prove that the CSVM is stronger than the traditional coal .
WhatsApp: +86 18203695377WEBApr 12, 2022 · Machine learning prediction of calorific value of coal based on the hybrid analysis. April 2022. International Journal of Coal Preparation and Utilization 43 (1):122. DOI: / ...
WhatsApp: +86 18203695377WEBJan 30, 2014 · This paper presents a new online coal identifiion system based on support vector machine (SVM) to achieve online coal identifiion under variable combustion conditions.
WhatsApp: +86 18203695377WEBApr 5, 2022 · In this section, we discuss several typical coal classifiion methods. The use of machine learning methods in combination with spectroscopy to classify coal is based mainly on ELM, random forest (RF) and support vector machine (SVM) [38], [39]. The comparison results are presented in Table 2. The proposed method outperforms these .
WhatsApp: +86 18203695377WEBAug 25, 2021 · The appliion of machine learning techniques in coal mine gas concentration prediction and early warning can effectively prevent gas explosion accidents. Nearly all traditional prediction models use a regression technique .
WhatsApp: +86 18203695377WEBJun 3, 2021 · This paper uses this as a starting point to propose a distributed support vector machine model based on a cloud computing platform. The model is based on the existing popular MapReduce distributed computing framework, and completes the classifiion and prediction work in the coal system in a distributed manner. ... Environmental cost control ...
WhatsApp: +86 18203695377WEBFeb 1, 2024 · Coal structure identifiion based on PSOSVM. In this study, the coal structure prediction model was established based on 175 sets of data (53 undeformed coal, 67 aclastic coal and 54 granulated coal) from 20 wells, excluding 10 sets of data from the No. 3 coal seam in Well M19 (4 undeformed coal, 1 aclastic coal and 2 .
WhatsApp: +86 18203695377WEBSep 7, 2023 · [Show full abstract] the healthy state of coal mining machine traction section model based on the establishment of the bearing inner ring fault, rolling body fault, outer ring fault of the coal ...
WhatsApp: +86 18203695377WEBDec 13, 2023 · The HTG diagrams are established based on previous work by Liu et al. 72 using coal as the investigated feedstock. HHV higher heating value, ER energy recovery, CR carbon recovery.
WhatsApp: +86 18203695377WEBNov 1, 2021 · In this study, we developed an automatic Ppick quality control model based on machine learning to identify useable/unusable Ppicks. ... Pd, and As in bulk metallurgical or coalbased solid waste greatly surpasses the standard levels. Nevertheless, by mixing such waste within the coal mine backfill materials, the resulting .
WhatsApp: +86 18203695377WEBSep 1, 2023 · With the trend of localization of imported coal machine reducers being imperative, the traditional reducer development method has the problems of a high failure rate in the design stage, a long development cycle, and high manufacturing costs. Based on reverse engineering, this paper discusses the process of localization and .
WhatsApp: +86 18203695377WEBMar 15, 2024 · The life cycle inventory of coal power generation in China was obtained from the CPLCID® (Chinese processbased life cycle inventory database, Zhang et al., 2016), which primarily includes an internationally peerreviewed inventory of subcritical, supercritical, and ultrasupercritical technologies for coal power generation (Hong et al., .
WhatsApp: +86 18203695377WEBOct 22, 2021 · Appliion of Volume Detection Based on Machine Vision in Coal and Gangue Separation. October 2021. DOI: / Conference: 2021 IEEE 5th Conference on Energy Internet and ...
WhatsApp: +86 18203695377WEBAug 15, 2023 · Prediction of gross calorific value as a function of proximate parameters for Jharia and Raniganj coal using machine learning based regression methods. Int J Coal Prep Util, 42 (12) (2022), pp., / View in Scopus Google Scholar [38]
WhatsApp: +86 18203695377WEBThis paper presents a novel coal mill modeling technique using genetic algorithms (GA) based on routine operation data measured onsite at a National Power (NP) power station, in England, The work focuses on the modeling of an Etype vertical spindle coal mill. The model performances for two different mills are evaluated, covering a whole range of .
WhatsApp: +86 18203695377WEBJun 1, 2019 · Wang et al. [13] constructed a classifiion model of coal based on a confidence machine, a support vector machine algorithm and nearinfrared spectroscopy, and a good classifiion result was obtained. Gomez et al. [14] used Fourier transform infrared photoacoustic spectroscopy combined with partial least squares to predict ash .
WhatsApp: +86 18203695377WEBNov 20, 2022 · Based on differences in coal rock texture features, Meng and Li put forward a GLCM and BPNNbased coal rock interface identifiion method. Wu and Tian ; Wu, Zhang proposed a ... Deep learning is a machine learning method based on a deep network model. To be specific, inspired by the concept of "receptive field" in the .
WhatsApp: +86 18203695377WEBApr 1, 2023 · Fig. 1 compares the surface state differences of coal and gangue in various situations based on the proposed model. In the ideal laboratory environment, the light intensity is high, the coal and gangue image acquisition process is simple, and the camera receives more light signals, so it is easy to distinguish coal and gangue; however, in the .
WhatsApp: +86 18203695377WEBMar 23, 2022 · The technology of microseismic monitoring, the first step of which is event recognition, provides an effective method for giving early warning of dynamic disasters in coal mines, especially mining water hazards, while signals with a low signaltonoise ratio (SNR) usually cannot be recognized effectively by systematic methods. This paper .
WhatsApp: +86 18203695377